
SPRING 2023 MATH 590: EXAM 2 SOLUTIONS

Name:

Throughout V will denote a vector space over F = R or C, T a linear transformation from V to V and A a
matrix with entries in F .

(I) True-False: Write true or false next to each of the statements below. (3 points each)

(a) If A is a 3× 3 real matrix whose eigenvalues are all in R, then A is diagonalizable. False

Comment. The matrix

(
1 1
0 1

)
has its eigenvalues in R but is not diagonalizable.

(b) For vectors v1, v2, w ∈ R5, if v1 and v2 are orthogonal to w, then 7v1 + 2v2 is orthogonal to w. True

(c) There exists a 7× 7 matrix with entries in C that has 81 distinct eigenvectors. True

Comment. Since C is infinite, every eigenspace (or any vector space) has infinitely many vectors.

(d) Suppose P and A are 2 × 2 real matrices satisfying: P−1 = P t and P−1AP = D, where D is a
diagonal matrix. Then A is a symmetric matrix. True

Comment. This is the converse to the Spectral Theorem for symmetric matrices over R.

(e) Suppose T : R4 → R4, and T (v1) = v1, T (v2) =
√

2 · v2, T (v3) = e · v3 and T (v4) = π · v4. Then T is
diagonalizable. True

Comment. Any transformation of an n diimensional space with n distinct eigenvalues is diagonaliz-
able.

(II) State the indicated definition, proposition or theorem. (5 points each)

(a) State the theorem characterizing when the linear transformation T : V → V is diagonalizable.

Solution. For a linear transformation T : V → V , with dim(V ) = n, the following are equivalent:

(i) T is diagonalizable.
(ii) pT (x) = (x− λ1)e1 · · · (x− λr)er for distinct λ1 ∈ R and dim(Eλi) = ei, for 1 ≤ i ≤ r.
(iii) pT (x) = (x− λ1)e1 · · · (x− λr)er for distinct λi ∈ R and dim(Eλ1

) + · · ·+ dim(Eλr
) = n.

Comment. See the Daily Update of March 22 and also Quiz 8.
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(b) State the theorem giving the Gram-Schmidt process as it applies to the independent set of vectors
{v1, v2, v3}.

Solution. There exists an orthogonal set of vectors {w1, w2, w3} satisfying Span{v1, v2, v3} = Span{w1, w2, w3},
where

(i) w1 = v1
(ii) w2 = v2 − 〈v2,w1〉

〈w1,w1〉 · w1.

(iii) w3 = v3 − 〈v3,w1〉
〈w1,w1〉 · w1 − 〈v3,w2〉

〈w2,w2〉 · w2.

Comment. See the Daily Update of March 31.

(c) State the four conditions that must be satisfied by the inner product 〈 , 〉 on the real vector space V .

Solution. The function from V ×V to R taking (v, w) to 〈v, w〉 is an inner product if, it satisfies the following
conditions for all v, w ∈ V and λ ∈ R:

(i) 〈v, w〉 = 〈w, v〉.
(ii) 〈v1 + v2, w〉 = 〈v1, w〉+ 〈v2, w〉.
(iii) 〈λv,w〉 = λ〈v, w〉 = 〈v, λw〉.
(iv) 〈v, v〉 ≥ 0 and 〈v, v, 〉 = 0 if and only if v = ~0.

Comment. See the Daily Update of March 29.

(III) Short Answer. (15 points each)

(a) Given the system of linear equations

2x− 3y + 5z = 11

−2x+ 3z = 8

−3y + 9z = 14,

use Cramer’s rule to solve for x, y, z, but do NOT calculate any of the resulting determinants.

Solution. Letting D =

∣∣∣∣∣∣
2 −3 5
−2 0 3
0 −3 9

∣∣∣∣∣∣, we have

x =

∣∣∣∣∣∣
11 3 5
8 0 3
14 −3 9

∣∣∣∣∣∣
D

y =

∣∣∣∣∣∣
2 11 5
−2 8 3
0 14 9

∣∣∣∣∣∣
D

z =

∣∣∣∣∣∣
2 −3 11
−2 0 8
0 −3 14

∣∣∣∣∣∣
D

.

Comment. See the Daily Update of March 1.
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(b) Given A =

(
6 2
2 6

)
, find an orthogonal matrix P such that P−1AP is a diagonal matrix. Be sure to

explain why P is orthogonal and verify that P−1AP is diagonal.

Solution. We have pA(x) =

∣∣∣∣x− 6 −2
−2 x− 6

∣∣∣∣ = (x− 6)2 + 4 = x2 − 12 + 32 = (x− 8)(x− 4), so that 8, 4 are

the eigenvalues of A

E8 is the nullspace of

(
−2 2
2 −2

)
EROs→

(
1 −1
0 0

)
, so v1 =

(
1
1

)
is a basis for E8.

E4 is the nullspace of

(
2 2
2 2

)
EROs→

(
1 1
0 0

)
, so v2 =

(
1
−1

)
is a basis for E4.

Note that v1 ·v2 = 0, so that v1, v2 are orthogonal (this always happens for a symmetric matrix with distinct
eigenvalues). Thus, if u1 = 1√

2
· v1 and u2 := 1√

2
· v2, {u1, u2} is an orthonormal basis for R2 and hence

P =
[
u1 u2

]
= 1√

2

(
1 1
1 −1

)
is an orthogonal matrix. Therefore, P−1 = P t = P (in this case). It follows

that

P−1AP =
1√
2

(
1 1
1 −1

)
·
(

6 2
2 6

)
· 1√

2

(
1 1
1 −1

)
=

1√
2

(
8 8
4 −4

)
· 1√

2

(
1 1
1 −1

)
=

1

2

(
16 0
0 8

)
=

(
8 0
0 8

)
.

Comment. This problem is almost exactly the same as problem (ii) given in the homework of March 3.

(c) Suppose V is the vector space of 2 × 2 matrices over R with inner product 〈A,B〉 := trace(AtB). Find

an orthonormal basis for the subspace of V spanned by v1 :=

(
1 0
0 −1

)
and v2 :=

(
−1 1
1 −1

)
.

Solution. Note that 〈v1, v2〉 = trace{AtB} = trace

(
−1 0
−1 1

)
= 0, so v1, v2 are orthogonal. Thus, we just

have to normalize these vectors to get the required orthonormal basis. We have

〈v1, v1〉 = trace{
(

1 0
0 −1

)
·
(

1 0
0 −1

)
} = trace

(
1 0
0 1

)
= 2

so ||v1|| =
√

2 and

〈v2, v2〉 = trace{
(
−1 1
1 −1

)
·
(
−1 1
1 −1

)
} = trace

(
2 −2
−2 2

)
= 4

so ||v2|| = 2. Thus, we may take

u1 =
1√
2

(
1 0
0 −1

)
and u2 =

1

2

(
−1 1
1 −1

)
for the required orthonormal basis.

Comment. This problem is almost exactly the same as, but easier than, the extra homework problem given
on March 31.
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(IV) Proof Problem. Let A be a 7×7 matrix over R such that P−1AP = D for some invertible 7×7 matrix
P and D the diagonal matrix with λ1, λ1, λ2, λ2, λ2, λ3, λ3 down its diagonal. Prove: The characteristic
polynomial pA(x) = (x− λ1)2(x− λ2)3(x− λ3)2, dim(Eλ1

) = 2,dim(Eλ2
) = 3,dim(Eλ3

) = 2. (25 points)

Solution. For any two matrices A and B, if P−1AP = B, for an invertible matrix P , then pA(x) = pB(x).
Thus, in our case, pA(x) = pD(x) = (x − λ1)2(x − λ2)3(x − λ3)2, since the matrix xI7 − D is a diagonal
matrix. Now, the algebraic multiplicities of λ1, λ2, λ3 are 2, 3, 2, respectively, and therefore, by a theorem
from class, dim(Eλ1

) ≤ 2,dim(Eλ2
) ≤ 3,dim(Eλ3

) ≤ 2.

On the other hand, if we let u1u2, . . . , u7 denote the columns of P , then PA = [Au1 Au2 Au3 Au4 Au5 Au6 Au7]
and AD = [λ1u1 λ1u2 λ2u3 λ2u4 λ2u5 λ3u6 λ3u7]. Since AP = PF , we have

Au1 = λu1

Au2 = λ1u2

Au3 = λ2u3

Au4 = λ2u4

Au5 = λ2u5

Au6 = λ3u6

Au7 = λ3u7

Since u1, . . . , u7 are the columns of an invertible matrix, they are linearly independent. Thus u1, u2 are
linearly independent in Eλ1 , and hence dim(Eλ1) ≥ 2; u3, u4, u5 are linearly linearly independent in Eλ2 ,
and hence dim(Eλ2) ≥ 3; u6, u7 are linearly independent in Eλ3 , and thus dim(Eλ3) ≥ 2.

It now follows that dim(Eλ1
) = 2,dim(Eλ2

) = 3,dim(Eλ3
) = 2.
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Bonus Problem. For ten bonus points, prove one (and only one) of the following bonus problems. In
order to receive any bonus points, your answer must be completely (or, very close to completely) correct.

1. Suppose T : R2 → R2 is a symmetric linear transformation. Prove that [T ]αα is a symmetric matrix, for
every orthonormal basis α ⊆ R2. Give an example where this fails, if α is not an orthonormal basis.

Solution. Suppose α = {u1, u2} is an orthonormal basis for R2 and T (u1) = au1 + bu2, T (u2) = cu1 + du2.

It follows that [T ]αα =

(
a c
b d

)
.

We also have
T (u1) · u2 = (au1 + bu2) · u2 = a(u1 · u2) + b(u2 · u2) = a0 + b1 = b,

and moreover,

u1 · T (u2) = u1 · (cu1 + du2) = c(u1 · u1) + d(u1 · u2) = c1 + d0 = c.

Since T (u1) · u2 = u1 · T (u2), it follows that b = s, showing that [T ]αα is symmetric.

Now consider T (x, y) = (x + 2y, 2x + y), a symmetric linear transformation. If we let v1 = (1, 1) and
v1 = (1, 0), then β = {v1, v2} is a basis for R2 (since the corresponding determinant is not zero). On the

other hand, T (v1) = (3, 3) = 3 · v1 + 0 · v2 and T (v2) = (1, 2) = 2 · v1− 1 · v2, so that [T ]ββ =

(
3 2
0 −1

)
, which

is not a symmetric matrix.

2. Suppose λ1, . . . , λr ∈ F are distinct and T (vi) = λivi, for non-zero vectors v1, . . . , vr. Then v1, . . . , vr are
linearly independent.

Solution. Suppose by way of contradiction, v1, . . . , vr are not linearly independent. Then there is a linear
combination of these vectors with at least one coefficient not zero. Among all such combinations, take one
with the fewest number of elements. After re-indexing, we may assume we have a linear dependence relation

α1v1 + α2v2 + · · ·+ αsvs = ~0

of shortest possible length. Thus, each αi 6= 0.

If we apply (T −λ1) to the equation above, and use the fact that T −λ1I is a linear transformation, we have

α1(T − λ1I)(v1) + α2(T − λ1I)(v2) + · · ·+ αs(T − λ1I)(vs) = ~0

α1(T (v1)− λ1v1) + α2(T (v2)− λ1v2) + · · ·+ αs(T (vs)− λ1vs) = ~0

α1(λ1v1 − λ1v1) + α2(λ2v2 − λ1v2) + · · ·+ αs(λsvs − λ1vs) = ~0

α2(λ2 − λ1)v2 + · · ·+ αs(λs − λ1)vs = ~0.

Since each αi(λi − λ1) 6= 0, the last equation above gives a dependence relation of length less than s. This
contradiction implies that there can be no dependence relation among v1, . . . , vr, i.e., v1, . . . , vr are linearly
independent.
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